Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Сложение и вычитание смешанных чисел». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
В математике выделяют дроби правильные и неправильные. Правильные — те, у которых числитель меньше знаменателя. Например: 1/3, 2/5, 4/12. Но бывает и так, что числитель становится больше знаменателя. Если объяснять предметно, то взято больше частей пирога, чем было тех, на которые он поделен. Такое вполне возможно и в жизни, и в математике.
Алгоритм действий при сложении двух дробей такой:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
- Выполнить сложение дробей путем сложения их числителей.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Вычитание дробей с разными знаменателями.
Или, если сказать другими словами, вычитание разных дробей.
Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ), и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.
Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.
Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители, то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!
Обыкновенная или простая дробь — это число вида a/b , где a — числитель дроби, b — знаменатель дроби. Суть дроби можно объяснить на примере пирога – например, дробь ¼ означает один кусок пирога из 4-ех.
Правильная — дробь, у которой числитель меньше знаменателя (например, 1/5, 2/9).
Неправильная — дробь, у которой числитель больше или равен знаменателю (например, 7/2, 5/5).
Смешанная — дробь, записанная в виде целого числа и правильной дроби. Она представляет собой сумму этого числа и дроби. Любую неправильную дробь можно перевести в смешанную путем выделения целой части (например, 9/4 = 2 ¼).
Десятичная — дробь со знаменателем 10, 100, 1000 и т.д. (например, 7/10 или 0,7; 9/100 или 0,09). Десятичная дробь записывается в виде целой и дробной части, которые отделяются запятой.
Что такое смешанные дроби?
У таких дробей можно отделить целую часть и оставшуюся после этого дробную. То есть будет видно, сколько взято целых пирогов и плюс определенное количество его частей. Нужно хорошо представить себе описанное, или даже проверить на практике, а не просто заучивать формулы. Тогда сокращение дробей будет выполняться ребенком осмысленно и безошибочно.
Для того чтобы трансформировать неправильную дробь в смешанное число, следует сперва числитель поделить на знаменатель. В результате почти всегда получим целое число и какой-то остаток. Целое число и нужно записать, как целую часть. А остаток — отправить в числитель дробной части. Неизменным остается только знаменатель.
Неправильными называют и дроби с одинаковым числом над и под дробной чертой: 6/6, 12/12 и т. д. Очевидно, что превратить их можно в 1. Наглядно это взято столько кусочков пирога, на сколько он и был поделен, т. е. целый пирог.
Примеры:
- 14/5 = (5*2+4) / 5 = 2 4/5
- 21/6 = (6*3+ 3) / 6 = 3 3/6
Задание:
Выделите целую часть из неправильных дробей:
- 15/4,
- 22/12,
- 30/7.
Можно провести противоположную процедуру — превратить смешанное число в неправильную дробь. Эта операция часто применяется в математических вычислениях, поэтому будет полезным узнать о ней. Для этого нужно сперва умножить целую часть и знаменатель. Затем получившееся число прибавить к числителю, а знаменатель оставить прежним.
Примеры:
- 3 1/8 = (3*8+1) / 8 = 25/8
- 7 4/9 = (7*9+4) / 9 = 67/9
Задание:
1. Преобразовать в смешанное число неправильную дробь:
- 27/4,
- 18/5,
- 45/7.
2. Выполнить обратную первой задачу — смешанное число превратить в неправильную дробь:
- 3 4/5;
- 12 7/11.
Вычитание смешанных дробей.
Смешанные дроби можно удалять так же, как и простые дроби. Чтобы удалить смешанные дробные числа, необходимо знать определенные правила абстракции. Изучите эти правила на примерах. Удаление дробей с разными знаменателями можно показать, перейдя по ссылке.
Рассмотрим пример, в котором удаляемая целая и дробная часть больше удаляемой целой и дробной части. В таких ситуациях удаление производится отдельно. Из дробных частей удаляются целые части.
Смешанные фракции ɛ (5 \ frac \) и ɛ (1 \ frac \) удаляются.
Убедитесь в правильности удаления, добавив. Проверьте удаление.
Рассмотрим пример, обусловленный условием, что дробная часть абстракции меньше дробной части абстракции, соответственно. В этом случае получите одно из целых чисел в слагаемом.
Удалите смешанную дробь \(6 \ frac) и \(3 \ frac \).
Задание 1
Найдите разность дробей 8/14
и
3/14
.
Решение
У данных дробей один и тот же знаменатель, следовательно:
8/14
–
3/14
=
8-3/14
=
5/14
Задание 2
Найдите разность дробей 6/7
и
9/20
.
Решение
Сперва приводим дроби к наименьшему общему знаменателю.
Наименьшее общее кратное обоих знаменателей равняется 140. Значит, дополнительный множитель для первой дроби – 20, для второй – 7.
6/7
=
6⋅20/7⋅20
=
120/140 9/20
=
9⋅7/20⋅7
=
63/120
Теперь у нас дроби с одинаковыми знаменателями, и мы можем вычесть из первой вторую:
120/140
–
63/140
=
120-63/140
=
57/140
Задание 3
Отнимите из дроби 3 5/7
дробь 2
3/7
.
Сложение дробей с разными знаменателями
Как складывать дроби с разными знаменателями — для этого нужно найти наименьший общий знаменатель (далее — НОЗ), а затем воспользоваться предыдущим правилом. Вот, что делать:
1. Найдем наименьшее общее кратное (далее — НОК) для определения единого делителя.
Для этого записываем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.
НОК (15, 18) = 3 * 2 * 3 * 5 = 90
2. Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:
Полученные числа записываем справа сверху над числителем.
3. Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению.
4. Проверим полученный результат:
- если делимое больше делителя, нужно преобразовать в смешанное число;
- если есть что сократить, нужно выполнить сокращение.
Как вычесть дроби, знаменатели которых одинаковые
Дроби — это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:
- Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m — b/m = (k-b)/m.
Вычитание и имеющих целые части
Вычитание дробей и их сложение мы уже детально разобрали. Но как произвести вычитание, если у дроби есть целая часть? Опять же, воспользуемся несколькими правилами:
- Все дроби, имеющие целую часть, перевести в неправильные. Говоря простыми словами, убрать целую часть. Для этого число целой части умножаем на знаменатель дроби, полученное произведение добавляем к числителю. То число, которое получится после этих действий, — числитель неправильной дроби. Знаменатель же остается неизменным.
- Если дроби имеют различные знаменатели, следует привести их к одинаковому.
- Произвести сложение или вычитание с одинаковыми знаменателями.
- При получении неправильной дроби выделить целую часть.
Русское слово «дробь», как и его аналоги в других языках, происходит от латинского слова «fractura» с арабским происхождением и означает в переводе: ломать или дробить. Основы теории обыкновенных дробей заложили греческие и индийские математики. Слова числитель и знаменатель ввёл в оборот греческий математик Максим Плануд.
Позже дроби появляются в Европейской математике, например, у Фибоначчи в 1202 году. Поначалу европейские математики оперировали только с обыкновенными дробями, а в астрономии — с шестидесятеричными. В Европе первые десятичные дроби ввёл Иммануил Бонфис около 1350 года, но широкое распространение они получили только после появления сочинения Симона Стевина «Десятая» (1585).
В России, начиная с древней Руси, дроби именовали долями. А в первых отечественных учебниках по математике дроби назывались ломаными числами. Термин «дробь», как аналог латинского «fractura», впервые используется в «Арифметике» Магницкого в 1703 году как для обыкновенных, так и для десятичных дробей.
Как следует переводить дробь?
Из смешанной дроби в обыкновенную:
- Необходимо умножить знаменатель дробной части на единицу целой части;
- К произведению, которое получилось, следует прибавить числитель дробной части;
- Сам знаменатель при этом оставить без изменений.
Из обыкновенной дроби в смешанную:
- Разделить числитель дроби на знаменатель;
- Полученный результат будет являться целой частью;
- То, что останется в результате деления (остаток) будет числителем.
Из десятичной дроби в обыкновенную или смешанную^
- Для этого действия необходимо целую часть умножать на знаменатель дробной части.
- После этого полученный результат сложить с числителем дробной части. То, что получилось в итоге, и будет числителем новой дроби, а сам знаменатель при этом останется без изменений.
Как решать уравнения с дробями
Универсальный алгоритм решения |
---|
|
А теперь еще несколько способов, которые пригодятся ребенку на уроках математики.
Примеры для самопроверки
Теория — это, конечно, хорошо. Но без практики — никуда. Пора потренироваться в решении примеров и закрепить тему сравнения дробей.
Пример 1. Сравните дроби:
Ответ: по правилу сравнения дробей с одинаковыми знаменателями, больше та дробь, у которой числитель больше. Это значит, что
Пример 2. Сравните дроби:
Ответ: по правилу сравнения дробей с разными знаменателями и одинаковыми числителями, больше та дробь, чей знаменатель меньше. Это значит, что
Пример 3. Сравните дроби:
Как решаем:
Ответ:.
- По правилу сравнения дробей с разными числителями и знаменателями, сначала нужно привести дроби к общему знаменателю:
- Наименьшее общее кратное — 15:
15 : 15 = 1
15 : 5 = 3 - Умножаем первую дробь на дополнительный множитель 1:
- Умножаем вторую дробь на дополнительный множитель 3:
- Дроби приведены к общему знаменателю:
- Сравниваем числители получившихся дробей: 3
Пример 4. Найдите разность:
Как решаем:
- Смешанные дроби превращаем в неправильные:
- Чтобы сравнить дроби с разными числителями и знаменателями, нужно привести их к общему знаменателю.
- Наименьшее общее кратное — 42:
42 : 7 = 6
42 : 6 = 7 - Умножаем первую дробь на дополнительный множитель 6:
- Умножаем вторую дробь на дополнительный множитель 7:
- Дроби приведены к общему знаменателю.
- Если знаменатели одинаковые — больше та дробь, числитель которой больше.
Мы видим, что вычитаемое меньше уменьшаемого, значит можем найти разность:
Чтобы отнять от уменьшаемого семи четырнадцатых вычитаемое две четырнадцатых, следует отнять от числителя семь и числитель два.
7 14 | — | 2 14 | = | 7 — 2 14 | = | 6 14 |